
Do Metadata-based Deleted-File-Recovery (DFR)
Tools Meet NIST Guidelines?
Andrew Meyer1,∗, Sankardas Roy1,∗

1Computer Science Department, Bowling Green State University, Bowling Green, Ohio, USA

Abstract

Digital forensics (DF) tools are used for post-mortem investigation of cyber-crimes. CFTT (Computer Forensics
Tool Testing) Program at National Institute of Standards and Technology (NIST) has defined expectations for a
DF tool’s behavior. Understanding these expectations and how DF tools work is critical for ensuring integrity
of the forensic analysis results. In this paper, we consider standardization of one class of DF tools which are
for Deleted File Recovery (DFR). We design a list of canonical test file system images to evaluate a DFR tool.
Via extensive experiments we find that many popular DFR tools do not satisfy some of the standards, and we
compile a comparative analysis of these tools, which could help the user choose the right tool. Furthermore,
one of our research questions identifies the factors which make a DFR tool fail. Moreover, we also provide
critique on applicability of the standards. Our findings is likely to trigger more research on compliance of
standards from the researcher community as well as the practitioners.

Received on 09 December 2019; accepted on 24 December 2019; published on 05 February 2020
Keywords: Deleted File Recovery, Digital Forensics, Metadata, NIST Guidelines, File System, FAT, NTFS
Copyright © 2020 Andrew Meyer et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.13-7-2018.163091

1. Introduction
Both in corporate and government settings, digital
forensic (DF) tools are used for post-mortem investi-
gation of cyber-crimes and cyber-attacks. Nowadays it
is common [1] for law enforcement to use DF tools to
follow an electronic trail of evidence to track down
a suspect. To maintain the quality and integrity of
DF tools, National Institute of Standards and Technol-
ogy (NIST)’s Computer Forensics Tool Testing Program
(CFTT) [2] defined expectations for these tools. Main-
taining the standards of DF tools is especially critical
for judicial proceedings: usage of a forensic tool that
does not follow the standards may cause evidence to
be thrown out in a court case, whereas incorrect results
from a forensic tool can also lead improper prosecution
of an innocent defendant.

The focus of this paper is about standardization of
one class of DF tools that are for Deleted File Recovery
(DFR) [3]. As the name suggests, a DFR tool attempts to

∗Corresponding author. Email: apmeyer@bgsu.edu
†Corresponding author. Email: sanroy@bgsu.edu

retrieve deleted files from a file system of a computer.
As an example, given a hard disk or a USB drive (which
might have been seized from the suspect computer or
collected from the crime scene), a forensics professional
can use a DFR tool to investigate about (and potentially
retrieve) files which a suspect deleted to hide important
information. The success or failure of a DFR tool can
decide the outcome of a case.

DFR tools are typically classified as one of two
varieties, corresponding to two different approaches
to file recovery. These varieties are metadata-based
tools and file carving tools. The focus of this paper is
metadata-based DFR tools, with file carving left for
future work. In the rest of the paper, unless otherwise
mentioned, by DFR tool we mean metadata-based DFR
tool.

Our experiments with a popular DF tool suite named
Autopsy [4] show that it does not meet all NIST
expectations for DFR. Furthermore, we extensively
experimented with other frequently used DFR tools.
We compare those tools’ performance and compile a
comparative analysis, which could help the user choose
the right DFR tool.

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

Online First

http://creativecommons.org/licenses/by/3.0/
mailto:<apmeyer@bgsu.edu>
mailto:<sanroy@bgsu.edu>

A. Meyer, S. Roy

Evaluating the performance of a DFR tool is
complex because many elements of a forensics scenario
determine the success or failure of the file recovery
process. A few such factors are the type of the
file system (FAT, NTFS, etc.), presence of other
active/deleted files in the file system, fragmentation of a
file, a deleted file being overwritten by another file, and
so on. So, comparison of two DFR tools is scientific only
if they are compared while keeping these factors same.
Via extensive analysis, we design a set of test file system
images (for either of FAT and NTFS) which considers
each of the above factors independently. We claim that
this list of test cases cover most of the scenarios (except
few edge cases) in real-life, and thus claim that our
evaluation has broad coverage.

As there are many file systems (e.g., ext4, HFS,
etc.) in addition to FAT and NTFS, one might be
interested to know why we chose FAT and NTFS
for the current work. Because FAT and NTFS are
very widely used on external storage devices and
devices running Microsoft Windows, respectively, real-
life forensics investigation often involves these two file
systems. While we leave other file systems for future
study, our current methodology could be extended to
other file systems to make a similar study.

The main contributions of the paper are listed as
follows:

• We design and build a list of canonical test file
system (FAT and NTFS) images to evaluate the
DFR tool per NIST guidelines.

• We perform evaluation of frequently-used DFR
tools (including free tools as well as proprietary
ones)1 on the test images.

• For the interesting cases of tools’ success or
failure, we provide logical explanation.

• We provide critique on applicability of some of
the NIST guidelines in a practical setting.

The NIST CFTT portal currently publishes reports of
only a subset of DFR tools. However, that set needs to
be expanded as many new tools come to market and
become popular. Also, existing DFR tools should be
retested to ensure their reliability is consistent as new
patches and features come out. Adding new reports to
the CFTT website will allow tool developers a chance
to continually develop their tools for the better. We
will submit our study reports to the CFTT portal. At
the time of writing, the portal publishes reports for
Autopsy [5] and FTK [6]; however, both reports are

1As the subject of our evaluation study, we have chosen a few tools or
trade names. In no case does such choosing imply recommendation or
endorsement by the authors.

from 2014 and evaluate now-outdated versions of the
software.

As a side benefit, our work leads to a few hands-on
lab-modules to be used in digital forensics courses at
BGSU, enriching the new DF specialization program in
the CS department. We will also make these modules
publicly available to be used by relevant instructors at
other universities.

2. Research Questions
A DFR tool is a piece of software that can retrieve
residual data of a file that was deleted from a storage
device (e.g., computer hard disk, flash drive, and so
on). We evaluate a set of popular DFR tools on the
scale of CFTT guidelines. In particular, following are
the research questions (RQs) that we target to answer.

RQ1. Do the popular DFR tools meet the NIST CFTT
expectation? If not, which tool meets which part
of the expectation?

RQ2. What factors make the tools fail or succeed?

RQ3. Are the free DFR tools more effective compared to
the enterprise-level (proprietary) tools?

The identification of errors, such as for not recovering
a deleted file or attempting to recover a file that was
never there (Type I and Type II errors, respectively), is
an important metric for a DFR tool. Type I and Type
II errors account for majority of the standard. Many
factors impact the performance of a DFR tool, including
file system type, whether the file content is not located
in contiguous clusters, whether some part of the deleted
file content is overwritten by another file, and more.
We consider these variables in the design of experiment
when we compare the tools. Note that our current
study is limited to exploring the core features of NIST
guidelines [3], i.e., we leave the optional features [3] of
NIST guidelines for future study.

3. Background
In this section, we present some of design basics
(often simplified to aid readability) of FAT file system
and NTFS file system, which are relevant to what we
discuss in the latter part of the paper. We highlight
what information remains in the file system after a
file is deleted, which leads to understanding of how
metadata-based file-recovery might work. Finally, we
present the core features of NIST standards for such
recovery tools.

3.1. FAT File System
As in many other file systems, a file in FAT system has
metadata in addition to the actual file content. The main
metadata of a file (say foo.txt) in FAT system is called a

2 EAI Endorsed Transactions on
Security and Safety

Online First

Do Metadata-based Deleted-File-Recovery (DFR) Tools Meet NIST Guidelines?

directory entry, which is of 32 bytes. The directory entry
of a file (say foo.txt) has three main essential elements:
(a) file name, (b) file size, and (c) index of the starting
cluster (which holds the actual file content). We can
figure out the index of other clusters of the file by
reading a global table called the FAT table. The FAT
table can determine the chain of clusters which hold the
data of a file. In particular, for each cluster (say x) of the
file system, the FAT table has an entry, and if FAT(x) is
0, then that means cluster x is currently unallocated. On
the other hand, if FAT(x) is y, then that means cluster y
is the next cluster after cluster x (as part of the same
file). If FAT(x) is EOF, that indicates cluster x is the last
cluster of the file.

As an example, the directory entry of foo.txt and
the clusters (holding the actual content of foo.txt) are
illustrated in Figure 1. The FAT table is also shown,
which tells us that foo.txt’s data is stored in contiguous
clusters, starting from cluster 100 and ending at cluster
200.

....
....

....

cluster
100

cluster
200

Starting
cluster=100

file
size“foo.txt”

FAT table

....

100th entry

101th entry

199th entry

200th entry

102

101

200

EOF

directory entry of file foo.txt

Data area

Figure 1. File foo.txt in a FAT file system. The directory entry of
this file and the actual file content clusters (shaded) are shown.
The FAT table is also shown, which determines the chain of
clusters (from cluster 100 to cluster 200) of foo.txt.

The change in metadata and actual content of foo.txt
is illustrated in Figure 2 after the file is deleted.
The first character of the file name (say “foo.txt") is
flagged (“_oo.txt") to denote that the file is deleted,
but the remaining part of the directory entry can
be still available. In the FAT table, the deleted file’s
corresponding entries are zeroed, which denotes that
those clusters are available to be allocated to a new
file (if necessary). However, the actual content carrying
clusters (say cluster 100 to cluster 200) can still be intact
until they are overwritten by another file.

Furthermore, it is possible that the content of a file is
not stored in contiguous clusters in FAT file system, and
this phenomenon is called fragmentation. If the original
file foo.txt has two fragments, it may look as illustrated
in Figure 3 where the file’s first fragment is from cluster
100 to cluster 101 and the second fragment is from
cluster 200 to cluster 298.

....
....

....

cluster
100

cluster
200

file
size“_oo.txt”

FAT table

....

100th entry

101th entry

199th entry

200th entry

0

0

0

0

directory entry of file foo.txt

Data area

Starting
cluster=100

Figure 2. The metadata and actual content of foo.txt are shown
after the file is deleted whereas the corresponding entries (i.e.,
100-200) in the FAT table are zeroed.

....
....

....

cluster
100

cluster
101

file
size“foo.txt”

FAT table

100th entry

101th entry

297th entry

298th entry

200

101

298
EOF

directory entry of file foo.txt

Data area

cluster
200

cluster
298

....

....

200th entry201

Starting
cluster=100

Figure 3. The layout of metadata and actual content of a file
foo.txt is shown whereas the file has two fragments (cluster 100-
101 and cluster 200-298) as determined by the FAT table.

3.2. NTFS File System
In an NTFS system, each file has an entry in the Master
File Table (MFT) where every entry is typically 1024
bytes. If a file is short, then all of its metadata as well
as the actual content can sit inside the MFT entry;
otherwise, the file content can be non-resident (i.e., not
in MFT entry) and located in other clusters.

As an example, the MFT entry of foo.txt and
the actual content carrying clusters are illustrated in
Figure 4. The MFT entry indicates that there are two
runs of clusters (100-101 and 200-298) which carry the
actual file content. In this case, the example file has two
fragments.

3.3. Metadata-Based Deleted File Recovery
The previous discussion implies that in many cases a
deleted file’s metadata (e.g., directory entry in FAT or
MFT entry in NTFS) can be still available, and it is
possible to recover the file content using this metadata.
This is called metadata-based deleted file recovery.

For instance, in the example of Figure 2, we can see
from the directory entry of foo.txt that the deleted file

3 EAI Endorsed Transactions on
Security and Safety

Online First

A. Meyer, S. Roy

Runs:
100-101
200-298

file
size

“foo.txt”

clusters

MFT table entry of file foo.txt

....
....

cluster 100 - 101

cluster 200 - 298

Figure 4. To illustrate NTFS file system, the MFT entry of foo.txt
and the actual content carrying clusters are shown. This file has
two fragments (cluster 100-101 and cluster 200-298).

starts in cluster 100 and has a size of 101 clusters; thus,
we can reason that the deleted file content is in cluster
100 to cluster 200. We can recover the whole file via
reading the raw content of these clusters (e.g., by using
dd command in Kali Linux).

Note that in FAT system the directory entry of a file
only refers to the starting cluster, and it does not carry
any information about the file fragments. That is why in
certain situations where the deleted file is fragmented,
metadata-based file recovery in FAT system encounters
challenges. On the other hand, if a file is fragmented
in NTFS, the corresponding MFT entry does contain
information on all the runs (i.e., fragments) of the file
(as shown in Figure 4). Consequently, fragmentation
does not introduce any extra challenge in file recovery
in NTFS.

3.4. NIST Guidelines
The NIST guidelines [3] list four core features upon
which metadata-based DFR tools are to be judged.
Following is the text of each core feature as well as our
interpretation of each in the context of this work:

1. “The tool shall identify all deleted File System-
Object entries accessible in residual metadata” [3].
We consider a tool passing this standard if it
identifies to the user each file system metadata
entry that is marked as deleted.

2. “The tool shall construct a Recovered Object for
each deleted File System-Object entry accessible
in residual metadata” [3]. We consider a tool
passing this standard as long as it outputs a file for
each deleted file, even if the output file is empty.

3. “Each Recovered Object shall include all non-
allocated data blocks identified in a residual
metadata entry” [3]. For FAT file systems, we
consider a tool passing this standard if it
recovers at least the first contiguous segment of

unallocated sectors starting from the first sector
originally allocated to the deleted file. For NTFS
file systems, the tool must recover all unallocated
sectors originally allocated to the deleted file.

4. “Each Recovered Object shall consist only of
data blocks from the Deleted Block Pool” [3].
We consider a tool passing this standard if the
recovered file consists only of data from the
original deleted file, or null data to represent
omitted portions.

4. Approach
4.1. Overview
To test the DFR tools, we first design hypothetical
test scenarios to simulate the challenges of real-world
file recovery. We then create each scenario in real file
systems and save them as raw images. Using the images
as input, we run each DFR tool and attempt to recover
all deleted files. Finally, we compare the recovered files
to their original versions in order to judge the tools’
meeting with the NIST expectation. A high-level view
of the methodology for a typical test case is illustrated
in Figure 5.

DFR
Tool

Set Up File
System With
Deleted Files

Create Disk
Image File

Input Disk Image
to DFR Tool

Inspect DFR
Tool Output

NIST CFTT
Guidelines

Recovered
Files

Deleted
Files

Compare results
to expectation

Figure 5. A file system containing deleted files is created on the
external drive. The drive’s raw data is then saved as a read-only
file, called a disk image or file system image. The disk image
is given as input to a DFR tool, which attempts to recover the
deleted files. The recovered files are then analyzed to judge the
DFR tool’s meeting with the NIST CFTT expectation.

4.2. Designing Recovery Scenarios
To test the DFR tools’ meeting with the expectation, we
designed a variety of scenarios in which a tool might
have to recover a deleted file. We started with the
simplest possible case: a file system containing just one
deleted file. This case is ideal and trivial, but by adding
more files, we can create a greater variety of scenarios.

The NIST guidelines limit their scope to recovery
of files which were “created and deleted in a process

4 EAI Endorsed Transactions on
Security and Safety

Online First

Do Metadata-based Deleted-File-Recovery (DFR) Tools Meet NIST Guidelines?

similar to how an end-user would create and delete
files,” [3] and exclude “files and file system metadata
that is specifically corrupted, modified, or otherwise
manipulated to appear deleted.” [3] In other words,
these guidelines address situations in which files
were deleted via normal file system operations as
implemented by a typical operating system, as opposed
to direct modification of the file system by a user.
Within these constraints, there are two factors which
can significantly complicate the file recovery process:
fragmentation, and overwriting.

These factors are thus the foundation of our test sce-
narios, with all cases besides the first involving either
fragmented files, overwritten files, or a combination of
both. The goal is to create test cases which are canonical;
in other words, they constitute the basic elements of
a file recovery scenario. We suggest such a canonical
list of test cases should be considered representative
of wide variety of scenarios within the scope of the
guidelines.

Following are descriptions of the test cases we
designed. We have separated them into five categories:
(a) a case with just a simple deleted file, (b)
cases involving fragmentation, (c) cases involving
overwritten files, (d) cases with a combination of
fragmentation and overwriting, and (e) cases with a file
fragmented “out of order.”

When test cases are illustrated in figures, each row
represents the file system at a point in time. An arrow
indicates a change in the file system, which is illustrated
in the following row. Files are distinguished by unique
letters, and if they are deleted they are marked as such.

Simple Deleted File.

Case 1 The file system contains a single deleted file.

Deleted File is Fragmented.

A AB

A (deleted) A (deleted)B

Figure 6. Test Case 2. Fragmented file A is deleted.

Case 2 Fragmented deleted file, with an active file
in between the fragments (as illustrated in
Figure 6)

Case 3 Fragmented deleted file, with a deleted file in
between the fragments

Deleted File is Overwritten.

A

A (deleted)

 A (deleted) A(deleted)B

Figure 7. Test Case 4ii. Deleted file A is partially overwritten
by active file B.

Case 4i Beginning of deleted file overwritten by an
active file

Case 4ii Middle of deleted file overwritten by an
active file (as illustrated in Figure 7)

Case 4iii Deleted file partially overwritten by an active
file which doesn’t end on a sector boundary

Case 4iv Deleted file entirely overwritten by an active
file

Case 5i Beginning of deleted file overwritten by
another deleted file (as illustrated in Fig-
ure 12)

Case 5ii Middle of deleted file overwritten by another
deleted file

Case 5iii Deleted file partially overwritten by a deleted
file which doesn’t end on a sector boundary

Case 5iv Deleted file entirely overwritten by a deleted
file

Deleted File is Fragmented and Overwritten.

Case 6 Fragmented deleted file, with an active file
in between the fragments, with the second
fragment overwritten by another active file
(as illustrated in Figure 8)

Case 7 Fragmented deleted file, with an active file
in between the fragments, with the second
fragment overwritten by another deleted file

Deleted File is Fragmented Out-of-Order.

Case 8 Deleted file fragmented from the end of the
file system to the beginning (as illustrated in
Figure 9)

5 EAI Endorsed Transactions on
Security and Safety

Online First

A. Meyer, S. Roy

B

A (deleted)

A (deleted)B

A

A (deleted) A (deleted)

A

B

A (deleted) C

Figure 8. Test Case 6. Fragmented file A is deleted. File A is
then partially overwritten by file C.

A part 2 A part 1

A part 2 (deleted) A part 1 (deleted)

Figure 9. Test Case 8. Fragmented file A, which starts at the end
of the file system and wraps around to the beginning, is deleted.

Case 9 Deleted file fragmented from the end of the
file system to after an active file

Case 10 Deleted file fragmented from the end of the
file system to after a deleted file

Because NTFS keeps track of the locations of all
parts of a file even after deletion, fragmentation is
not particularly interesting. Cases 8, 9, and 10 would
be redundant with case 2, so we have excluded them
for NTFS. Due to how NTFS allocates space for files,
cases 4ii and 5ii cannot occur as a result of normal file
operations, so they have also been excluded. No cases
are excluded for FAT tests.

4.3. Creating Test Images
All test file systems were created in partitions on a 32
GB flash drive. For each test case, the first step is to
entirely write over the partition with zeros. This ensures
all cases start from identical, reproduceable conditions.
A new file system is written to the partition, then files
are written to the file system and deleted. The files used
are simple text files containing one letter repeated (e.g.,
“aa1M” is 1 MiB of the letter ‘a’). Files are written to the
test file system by simply copying them from another

drive. In some cases we also append data to a file in the
test file system to create fragmentation. Once the test
file system matches the intended scenario, a read-only
image of the partition is created. All tests are performed
on these images rather than the original drive. Note that
when creating FAT test cases we use Ubuntu 18.04 and
for NTFS test cases we use Windows 10.

Challenges. It is important to consider when creating
test images that the low-level behavior of file operations
is not always obvious. For example, when writing
a file, there is no guarantee the file’s data will be
immediately written to the disk. The operating system
may cache the operation and wait until the optimal
time to perform the write, in order to maximize system
performance. We observed this early on, as writing a
file and subsequently deleting it would always result
in the file’s metadata being written, but often left no
evidence of the file’s data having ever existed. This
behavior is obviously undesirable because it leaves
nothing meaningful to be recovered. We resolved this
by using the sync system call, which causes any such
cached data to be immediately written to the disk, in
between file writes and deletions. Unmounting the file
system after writes has a similar effect.

Another type of low-level behavior relevant to the
image creation process is the allocation algorithm. The
operating system must have some kind of algorithm
to decide where in the data area new files should be
written. Common allocation algorithms include “first
available,” “next available,” and “best fit.” Learning and
understanding whatever algorithm the OS uses is very
helpful for forcing a specific arrangement of files. We
observed that when writing to a FAT file system, Linux
uses a “next available” algorithm. After the file system
is mounted, the first write will start at the first free
space in the data area. The next file will be written
starting from the first free space after the previous
file. Meanwhile, when writing to an NTFS file system,
Windows 10 appears to use a “best fit” algorithm. In
this case, Windows tries to find the smallest space in
which the file can fit without being fragmented, and
write it there.

4.4. Recovering Files
We selected five popular DFR tools for testing:
Autopsy [4], Recuva [7], FTK Imager [8], TestDisk [9],
and Magnet AXIOM [10]. Note that Autopsy uses a
set of DF tools known as The Sleuth Kit (TSK) for
metadata-based recovery, so TSK is also implicitly
covered by this study. These tools were chosen based on
popularity and availability. We also made sure to choose
a combination of free and proprietary tools, in order to
address one of the research questions.

The settings we used when testing each tool are as
follows: For Autopsy, we performed a standard recovery

6 EAI Endorsed Transactions on
Security and Safety

Online First

Do Metadata-based Deleted-File-Recovery (DFR) Tools Meet NIST Guidelines?

Autopsy
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4ii
Case 4iii
Case 4iv
Case 5i
Case 5ii
Case 5iii
Case 5iv
Case 6
Case 7
Case 8
Case 9
Case 10

(a) Autopsy

Recuva
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4ii
Case 4iii
Case 4iv
Case 5i
Case 5ii
Case 5iii
Case 5iv
Case 6
Case 7
Case 8
Case 9
Case 10

(b) Recuva

FTK Imager
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4ii
Case 4iii
Case 4iv
Case 5i
Case 5ii
Case 5iii
Case 5iv
Case 6
Case 7
Case 8
Case 9
Case 10

(c) FTK

TestDisk
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4ii
Case 4iii
Case 4iv
Case 5i
Case 5ii
Case 5iii
Case 5iv
Case 6
Case 7
Case 8
Case 9
Case 10

(d) TestDisk

Magnet Axiom
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4ii
Case 4iii
Case 4iv
Case 5i
Case 5ii
Case 5iii
Case 5iv
Case 6
Case 7
Case 8
Case 9
Case 10

(e) Magnet AXIOM

Figure 10. Test results on FAT test cases for each DFR tool. Rows represent test cases whereas columns represent NIST core features.
Blue is passing, red is failing, gray is not tested.

Autopsy
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4iii
Case 4iv
Case 5i
Case 5iii
Case 5iv
Case 6
Case 7

(a) Autopsy

Recuva
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4iii
Case 4iv
Case 5i
Case 5iii
Case 5iv
Case 6
Case 7

(b) Recuva

FTK Imager
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4iii
Case 4iv
Case 5i
Case 5iii
Case 5iv
Case 6
Case 7

(c) FTK

TestDisk
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4iii
Case 4iv
Case 5i
Case 5iii
Case 5iv
Case 6
Case 7

(d) TestDisk

Magnet Axiom
1 2 3 4

Case 1
Case 2
Case 3
Case 4i
Case 4iii
Case 4iv
Case 5i
Case 5iii
Case 5iv
Case 6
Case 7

(e) Magnet AXIOM

Figure 11. Test results on NTFS test cases for each DFR tool. Rows represent test cases whereas columns represent NIST core
features. Blue is passing, red is failing, gray is not tested.

with all ingest modules disabled. For Recuva we
performed a standard recovery using the free version
with default settings. For FTK Imager, we performed a
standard recovery using the free version with default
settings. For TestDisk we used the “file undelete”
feature under “Advanced Filesystem Utils.” For Magnet
AXIOM we performed a “full scan” in AXIOM Process
and exported all files accessible in “Filesystem View” in
AXIOM Examine.

4.5. Results
After testing each tool, we analyzed the recovered
object(s) from each test case. If the recovered file is
identical to the original, obviously all expectations have
been met. While this is ideal, it is often impossible to
perfectly recover a file (such as when it is overwritten)
so the standards do not require it.

In our results, the file is only ever recovered
perfectly in FAT cases 1 and 2, and NTFS cases 1-3.
For all other cases, the tool is judged on each core
feature individually. These judgments are summarized
in Figure 10 for FAT test cases and Figure 11 for NTFS
test cases.

For cases in which a tool does not fulfill core feature
1, in other words, it cannot find a deleted file, we make
no judgment about the remaining core features.

Recovering Fragmented Files. In cases of fragmentation
in FAT file systems, we found each tool generally
approaches recovery in one of two ways. Recuva and
Magnet AXIOM start from the beginning of the file
and recover the full length of the file even if an active
file exists in that space. Autopsy, FTK, and TestDisk
will start from the beginning of the file and recover
the full length, but skip over any active files they

7 EAI Endorsed Transactions on
Security and Safety

Online First

A. Meyer, S. Roy

encounter. Autopsy, FTK, and TestDisk recover all of
file A, while Recuva and Magnet AXIOM’s recovered
images erroneously contain data from file B, causing
them to fail core feature 4. When the space in between
fragments is unallocated, all tools recover the file as
though it was contiguous, pulling some erroneous data
and failing core feature 4. When the fragmentation
occurs at the end of the file system, Recuva, FTK,
and TestDisk recover only the first fragment, while
Autopsy returns a short file of null data, and Magnet
AXIOM reports an error and returns an empty file.
Cases with fragmentation are trivial for NTFS file
systems as more information is available from the
metadata. Unsurprisingly, no tools had problems with
fragmentation cases for NTFS.

Recovering Overwritten Files. In cases where a file has
been overwritten by an active file, we found most tools
recover the deleted file as though it is not overwritten,
failing core feature 4. A few exceptions are FTK Imager,
which recovers the file up to the point where it has been
overwritten, and Autopsy, which generally recovers
only the first cluster of an overwritten file in FAT, and
behaves like the other tools for NTFS. TestDisk also
exhibits the same behavior as FTK for FAT case 4ii only.
Strangely, Magnet AXIOM’s recovered objects for FAT
cases 4i and 4ii include the overwritten sections, but
nothing after them. Other Magnet AXIOM results were
similar to the other tools. When the overwriting file
has also been deleted, all tools recover the first file as
though it is not overwritten.

Abnormal Results. A few results stand out as unusual.
These are cases for which it is difficult to infer from the
recovered object what approach a tool is using.

For FAT cases 4ii, 6, 8, 9, and 10, Autopsy returns
a 1.5 KiB file of null data. 1.5 KiB is equivalent to 3
sectors, while a FAT cluster in our cases is defined as 4
sectors (2 KiB).

TestDisk fails to identify a file for NTFS cases 4iii and
4iv only. These are the only test cases in which a tool
does not fulfill core feature 1.

For FAT cases 4i and 4ii, Magnet AXIOM does not
recover the entire length of the deleted file, but it also
does not exclude the overwritten sections. In both cases,
it recovers up to the end of the overwritten sections,
rather than up to the beginning like FTK does.

5. Discussion
5.1. Answering Research Questions
RQ1. Do the popular DFR tools meet the NIST CFTT
expectation? If not, which tool meets which part of the
expectation?

Generally, we found that the DFR tools we tested
did not consistently meet the NIST CFTT expectation.
TestDisk failed to fulfill core feature 1 because it did not

identify deleted files in two test cases. All tools fulfilled
core feature 2, as they produced a recovered object for
every deleted file they identified. Autopsy and Magnet
AXIOM failed to fulfill core feature 3 because in several
test cases they did not recover data they had access to.
All tools failed to fulfill core feature 4 because in many
cases they recovered data which was not part of the
original file.

RQ2. What factors make the tools fail or succeed?

The most common factor causing tools to fail is
when a deleted file has been overwritten. Core feature
4 requires that a tool only recover data which was
originally a part of the deleted file. A tool’s success
regarding this feature is thus a measure of its restraint.
The only tool to consistently fulfill core feature 4 is FTK
Imager. When it detects that a file has been partially
or completely overwritten by another file, it omits the
deleted sections (and everything after them in FAT).
However, in cases when the overwriting file has also
been deleted, even FTK fails to fulfill this core feature.
It is worth noting that Autopsy does appear to react to
overwritten files; for some cases of overwriting in FAT,
it returns only a single cluster, presumably the starting
cluster of the deleted file. However, since that cluster
has been overwritten, Autopsy still fails to fulfill core
feature 4 in those cases.

Another factor that causes multiple failures is
simulated in FAT cases 8, 9, and 10. In FAT, a file can
be written starting close to the end of the file system,
without enough space to fit contiguously. In such cases,
the file must be fragmented, and since it is already at
the end of the file system, the second fragment will
appear closer to the beginning of the file system (this is
illustrated in Figure 9). This scenario could realistically
occur when the file system is almost full. In these
cases, no tool is able to recover the second fragment of
the deleted file; however, because FAT fragmentation is
unpredictable, we only require them to recover the first
fragment. Interestingly, Autopsy and Magnet AXIOM
fail to recover anything at all, with Autopsy returning
a short file of null data, and Magnet AXIOM returning
an empty file after displaying an error message.

RQ3. Are the free DFR tools more effective compared
to the enterprise-level (proprietary) tools?

As can be observed in Table 1, no type of tool clearly
outperforms the others. FTK Imager, a proprietary
enterprise-level tool, passes the most test cases by a
large margin. However, the other enterprise-level tool,
Magnet AXIOM, passes the least test cases. Given the
available data, we cannot reach a definite conclusion for
RQ3.

8 EAI Endorsed Transactions on
Security and Safety

Online First

Do Metadata-based Deleted-File-Recovery (DFR) Tools Meet NIST Guidelines?

Table 1. DFR tools sorted by type. “Passes” refers to the number
of test cases in which a tool fulfills all 4 core features.

DFR Tool Type Passes
Autopsy free open source 5
TestDisk free open source 10
Recuva proprietary freemium 7

FTK Imager proprietary enterprise 18
Magnet AXIOM proprietary enterprise 4

5.2. Ambiguity in Standards
While determining how to interpret the NIST guide-
lines, we encountered ambiguities in their current
wording.

Core Feature 3 and FAT Fragmentation. Core feature 3’s
requirement that a tool recover “all non-allocated data
blocks identified in a residual metadata entry”[3] is
not well-defined when considering a FAT file system.
In FAT, the only relevant metadata left over after file
deletion is the address of the first cluster of file data,
and the file’s length. If the deleted file is fragmented
at any point, no evidence remains in the metadata.
Therefore, interpreting the wording very closely, a tool
is only required to recover the first cluster of a file’s
data. As this would not be particularly useful, it is
unlikely that this was the intended meaning. For these
tests we interpret core feature 3 as requiring the first
contiguous segment of unallocated clusters starting
from the first cluster originally allocated to the deleted
file. In other words, if the file is fragmented, the tool
must recover at least the first fragment. If a file is
partially overwritten, the tool must recover at least the
clusters before the overwritten part. In essence, the tool
is only required to recover data for which it does not
have to guess what file the data belongs to. However,
it should be emphasized this is an assumption and the
intent of the standard in this case needs clarification.

Contradictory Core Features. When designing test cases,
we found situations in which core features 3 and 4 are
entirely incompatible. Core feature 3 specifies “all non-
allocated data blocks identified in a residual metadata
entry,”[3] but that can sometimes still include data from
other files. One such situation is when a deleted file
is overwritten, and then the overwriting file is also
deleted, such as in case 5i (as seen in Figure 12).

Assuming the file system is NTFS (to avoid the
aforementioned ambiguity with core feature 3 and
FAT), the residual metadata entry for File A (in this case
its Master File Table entry) should list every cluster File
A once occupied. All of those clusters are unallocated,
so to fulfill core feature 3, the tool must recover them.
However, some of those clusters have been overwritten
by File B. Core feature 4 requires that a tool only
recover “data blocks from the Deleted Block Pool,” [3]

A (deleted)

A (deleted)B

A (deleted)B (deleted)

Figure 12. Test Case 5i

and defines the Deleted Block Pool as all blocks which
“have not been reallocated or reused.” [3] Core feature
3 would require tools to recover the clusters reused
by File B, while core feature 4 would forbid this.
It could be argued that the tool should use File B’s
metadata to recognize that File B overwrote File A,
but this is not always realistic. While the file system
stores information such as creation and modification
times, this is not “essential metadata,” meaning it is
not involved in the operation of the file system, so
operating systems may implement it inconsistently, or
not at all. [11] Since the time information cannot be
counted on to be reliable, there is no way to know for
sure which file overwrote which. It is also possible for
File B’s metadata entry to be overwritten at some point
before File A’s, in which event there is no way for the
tool to know File B even existed.

The standards document acknowledges that the
“potential for corruption [is] inherent with data that
is no longer maintained by a file system,” [3] and
that the recovered object “may not completely match
the original FS-Object.” [3] We propose the standards
themselves should be revised to better account for such
situations. This could mean adding an exception to
either the third or fourth core feature, for cases in
which data blocks are overwritten and subsequently
deallocated.

NIST’s James Lyle proposes that rather than deal with
the complications involved in accommodating many
different file systems, standards should be written for
“an ideal file system that leaves in residual metadata all
information required to reconstruct a deleted file” [12].
While this can result in tools being held to an
impossible standard when using certain file systems,
Lyle says that is acceptable because the user experience
will be the same regardless of whether a feature is
impossible or has merely been left out. If the NIST
guidelines were created with such an ideal file system in
mind, the current standards may be adequate. However,
that philosophy should be clarified in the guidelines
document to avoid confusion.

9 EAI Endorsed Transactions on
Security and Safety

Online First

A. Meyer, S. Roy

5.3. Related Work
Arthur et al. published an article [13] in 2004 which
analyzes several DF (digital forensics) tools, including
FTK Imager. While the tools are judged based in
part on file recovery capabilities, the article does not
present how these judgments were reached. The article
also addresses DF tools’ disk imaging and hashing
functionalities.

James Lyle from NIST published an article [12]
in 2011, which lays out a strategy to evaluate
the metadata-based DFR tools. To the best of our
knowledge, his is one of the first works that identified
some of the challenges in setting standards for
evaluation of metadata-based DFR tools. In our
understanding, NIST considered the above findings [12]
while they set the guidelines for metadata-based DFR
tools. The NIST guidelines [3] are publicly available on
the NIST CFTT portal [2], which we have used in the
current work.

Recently, Loja et al. [14] analyzed a variety of DF
tools, including Autopsy and FTK. They discussed
a wide range of DF tools, not just DFR tools, and
compared them on metrics such as price and supported
features. In contrast with our paper, their work does
not follow a specific standards document and takes
a more general approach instead. Furthermore, B. V.
Prasanthi [15] presented a general review of DF tools. In
particular, Prasanthi summarizes the features of several
tools but does not make any claims about standards
compliance of specific tools (which is contrast with our
work). It [15] also includes a variety of DF tools besides
DFR tools.

5.4. Future Work
The NIST CFTT guidelines [3] include several optional
features; these features could be explored using a
similar methodology. We only created test images for
the FAT and NTFS file systems; our process could be
expanded to other common file systems such as ext4
and HFS. NIST CFTT has a separate set of guidelines
for file carving DFR tools; future work could involve
creating and evaluating test cases for file carving tools.

6. Conclusion
We designed a set of canonical test cases to determine
a metadata-based DFR tool’s meeting with the NIST
CFTT guidelines. We tested five popular DFR tools
and evaluated their results. We presented a comparison
of the tools based on the number of test cases for
which each tool meets the standards. We concluded that
none of the tested tools consistently fulfilled the NIST
guidelines, and explain the factors which cause them
to fail. We also identified potential weaknesses in the
guidelines and suggested improvements.

Acknowledgement. A. Meyer’s work has been partially
supported by a grant from BGSU’s Center for Undergraduate
Research and Scholarship (CURS) in summer of 2019. S. Roy’s
work has been partially supported by a NIST grant (grant
number: 70NANB17H321; Year 2017-19) that he has been
awarded with as a Co-PI. Any opinions or findings expressed
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies. Quinton Currier at
BGSU assisted with the testing process.

References
[1] Gaudin, S., Digital trail led investigators to alleged

craigslist murderer, https://www.computerworld.

com/article/2523694/digital-trail-led-

investigators-to-alleged-craigslist-murderer.

html.
[2] NIST, Computer forensics tool testing program (CFTT),

https://www.nist.gov/itl/ssd/software-quality-

group/computer-forensics-tool-testing-program-

cftt.
[3] NIST CFTT (2009), Active file identification and deleted

file recovery DFR tool specification: Version 1.1.,
https://www.nist.gov/system/files/documents/

2017/05/09/dfr-req-1.1-pd-01.pdf.
[4] Autopsy 4.11.0, https://www.autopsy.com/.
[5] US Department of Homeland Security, The

sleuth kit (tsk)3.2.2/autopsy 2.24 test results for
deleted file recovery and active file listing tool,
https://www.dhs.gov/sites/default/files/

publications/508_Test%20Report_The%20Sleuth%

20Kit%203%202%202%20-%20Autopsy%202%2024%

20Test%20Report_November%202015_Final.pdf.
[6] US Department of Homeland Security, Ftk version

3.3.0.33124 test results for deleted file recovery and
active file listing tool (revised), https://www.dhs.

gov/sites/default/files/publications/508_Test%

20Report_NIST_FTK%20v3%203%200%2033124%20%

28Revised%29_August%202015_Final_0.pdf.
[7] Recuva 1.53.1087, https://www.ccleaner.com/recuva.
[8] Forensic Toolkit (FTK) 4.2.0.13, https://accessdata.

com/products-services/forensic-toolkit-ftk.
[9] TestDisk 7.0, https://www.cgsecurity.org/wiki/

TestDisk.
[10] Magnet AXIOM 2.7.1.12070, https://www.

magnetforensics.com/products/magnet-axiom/.
[11] Carrier, B. (2005) File System Forensic Analysis (Addi-

son-Wesley).
[12] Lyle, J.R. (2011) A strategy for testing metadata based

deleted file recovery tools. In International Conference on
Digital Forensics and Cyber Crime (Springer): 104–114.

[13] Arthur, K. and Venter, H. (2004) An investigation
into computer forensic tools. In ISSA Enabling Tomorrow
Conference: 1–11.

[14] Loja, N., Morocho, R. and Novillo, J. (2016) Digital
forensics tools. International Journal of Applied Engineer-
ing Research 11: 9754–9762.

[15] Prasanthi, B. (2016) Cyber forensic tools: A review.
International Journal of Engineering Trends and Technology
41: 266–271.

10 EAI Endorsed Transactions on
Security and Safety

Online First

https://www.computerworld.com/article/2523694/digital-trail-led-investigators-to-alleged-craigslist-murderer.html
https://www.computerworld.com/article/2523694/digital-trail-led-investigators-to-alleged-craigslist-murderer.html
https://www.computerworld.com/article/2523694/digital-trail-led-investigators-to-alleged-craigslist-murderer.html
https://www.computerworld.com/article/2523694/digital-trail-led-investigators-to-alleged-craigslist-murderer.html
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/system/files/documents/2017/05/09/dfr-req-1.1-pd-01.pdf
https://www.nist.gov/system/files/documents/2017/05/09/dfr-req-1.1-pd-01.pdf
https://www.autopsy.com/
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_The%20Sleuth%20Kit%203%202%202%20-%20Autopsy%202%2024%20Test%20Report_November%202015_Final.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_The%20Sleuth%20Kit%203%202%202%20-%20Autopsy%202%2024%20Test%20Report_November%202015_Final.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_The%20Sleuth%20Kit%203%202%202%20-%20Autopsy%202%2024%20Test%20Report_November%202015_Final.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_The%20Sleuth%20Kit%203%202%202%20-%20Autopsy%202%2024%20Test%20Report_November%202015_Final.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_FTK%20v3%203%200%2033124%20%28Revised%29_August%202015_Final_0.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_FTK%20v3%203%200%2033124%20%28Revised%29_August%202015_Final_0.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_FTK%20v3%203%200%2033124%20%28Revised%29_August%202015_Final_0.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_FTK%20v3%203%200%2033124%20%28Revised%29_August%202015_Final_0.pdf
https://www.ccleaner.com/recuva
https://accessdata.com/products-services/forensic-toolkit-ftk
https://accessdata.com/products-services/forensic-toolkit-ftk
https://www.cgsecurity.org/wiki/TestDisk
https://www.cgsecurity.org/wiki/TestDisk
https://www.magnetforensics.com/products/magnet-axiom/
https://www.magnetforensics.com/products/magnet-axiom/

	1 Introduction
	2 Research Questions
	3 Background
	3.1 FAT File System
	3.2 NTFS File System
	3.3 Metadata-Based Deleted File Recovery
	3.4 NIST Guidelines

	4 Approach
	4.1 Overview
	4.2 Designing Recovery Scenarios
	Simple Deleted File
	Deleted File is Fragmented
	Deleted File is Overwritten
	Deleted File is Fragmented and Overwritten
	Deleted File is Fragmented Out-of-Order

	4.3 Creating Test Images
	Challenges

	4.4 Recovering Files
	4.5 Results
	Recovering Fragmented Files
	Recovering Overwritten Files
	Abnormal Results

	5 Discussion
	5.1 Answering Research Questions
	RQ1
	RQ2
	RQ3

	5.2 Ambiguity in Standards
	Core Feature 3 and FAT Fragmentation
	Contradictory Core Features

	5.3 Related Work
	5.4 Future Work

	6 Conclusion

