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Abstract—Solid state fermentation processes are mediated by
the collective metabolism of specialized microbial communities.
Monitoring the relative abundance of dominating species is
a critical task in quality control, which is traditionally done
by wet lab techniques, such as quantitative PCR (qPCR). In
this study, we developed a computational method to quantify
microbial species in metagenomes based on their signature
genomic sequences, i.e., unique k-mers. Bacterial species found
in fermentation starters of a Chinese liquor producer were used
as examples to demonstrate the development and application
of the method. A database was constructed, comprising 562
complete genome sequences of 93 bacterial species that had been
found in relevant fermentation samples. K-mers in length of 12
were extracted from each species and compared against each
other to identify the ones that were unique to each species.
The quantity of a species was determined by the average
frequencies of unique k-mers encountered in the metagenome.
Six dominating bacterial species were chosen as reporter species
to test the quantification method. Four metagenome datasets
were simulated, which contained various portions of sequence
reads generated from the genomes of the reporter species. The
amount of reads sampled from each reporter species followed
a pre-determined ratio, i.e., a known relationship in relative
abundance. For each simulated dataset, the cell number of each
reporter species was computed based on the unique k-mers found
in the metagenome. In all datasets, the computed quantities of
the reporter species reflected the expected relative abundance by
displaying a linear relationship with the pre-determined ratio.
This demonstrates that quantification based on a set of unique
k-mers is a reliable way to detect relative abundance among
species. Besides industrial fermentation, this method may also
be applied to areas such as wastewater treatment, microbiota
analysis, etc.

Index Terms—Relative abundance, K-mers, Signature se-
quences, Fermentation, Microbial community

I. INTRODUCTION

Many traditional beverages are produced by solid state
fermentation, in which naturally occurring microbial commu-
nities are used to inoculate the feedstock, and fermentation
takes place in ambient environment without vigorous stir-
ring. In these processes, the collective metabolic capacities

of specialized microbial communities convert the feedstock
into beverages of distinctive flavors. Due to the variation
of environmental conditions, such as seasonal temperatures
and humidity, groundwater pH and hardiness, as well as
nutritional compositions of local feedstock, microbial com-
munities found in different geographic fermentation stations
vary, and consequently, flavor of the products. For example,
Chinese liquor, i.e., Baijiu, is a type of alcoholic beverage
being produced by thousands plants across the country using
traditional solid fermentation methods [1], [2]. Each plant
is operated under an established protocol that is optimized
for local environmental conditions, and each plant supplies
liquor of distinctive flavors that are recognized by specific
consumer populations. Great efforts have been taken in recent
years to isolate and characterize the microbial species in these
fermentation samples and have offered valuable insights about
the composition and metabolism of these microbes [3]–[10].

On the other hand, because of its exposure to the ambient
environment, solid fermentation is prone to contamination and
drifts in species compositions. This inevitably compromises
the quality of the beverages and results in significant economic
losses. Cycles of solid fermentation normally take months
or even years to complete, and early detection of abnormal
microbial compositions could prompt managerial actions to
mitigate losses. In our previous study, we developed a set of
real-time PCR primers for quantification of microbial species
in several starter and pit mud samples of a liquor company in
China (Gujing Group, Anhui, China) [11]. The fermentation
facilities have been in continuous operation for nearly two
thousand years and are a major contributor to local economy.
The primers are instrumental in product quality control, but the
design and screening of the primers was time consuming and
labor intensive. A different fermentation process will require
monitoring a different set of microbial species [12], and thus
the entire primer design and screening work will have to be
repeated. Therefore, it is desirable to have a method that can be
easily automated and adapted to another fermentation process.



This study aims to develop a computational method to
quantify microbes at the species level in a metagenome based
on unique k-mers of each target species, i.e., a DNA string
of length k that is shared by all strains of the target species
but not any other species. The intended application of our
method is to monitor the fermentation process by routinely
sequencing the metagenomes of the fermentation samples at
designated time points and calculating the relative abundance
of a set of reporter species. Because the metabolic activities
of each microbial species are affected by every other species
coexisting in the same environment, an apparent deviation
from the expected ratio among the reporter species could be
an early sign of abnormal metabolism and demands immediate
attention. In fermentation samples, microbial communities are
often dominated by a dozen or so known species, even though
their relative abundance changes dramatically throughout the
production. These dominating species are ideal candidates for
reporter species, and the quantitative relationship among them
is a reliable indicator of the overall health of fermentation
processes.

Our method focuses on estimation of the relative quantities
of reporter species and requires prior knowledge of the taxo-
nomic membership of the community. The taxon knowledge
can be acquired by existing technologies, such as 16S rRNA
profiling, using TA-cloning [11] or next-generation sequencing
technologies (NGS) [13]. In principle, these methods may
also be used to quantify microbial compositions in complex
communities, but they suffer bias caused by many factors,
including primer design and PCR amplification, which could
severely distort the quantities of bacteria actually present in a
sample [14]–[16]. Kraken [17] is highly effective in assigning
taxonomic labels to metagenomics DNA sequences and is
an excellent choice for the initial classification purpose to
determine what microbes are there in a fermentation sample.
However, for later monitoring purpose, using Kraken would
be too computationally expensive to us because it tries to
classify and quantify all species contained in a sample, instead
of a small set of reporter species. This is a drawback shared
by MetaPhlA [18]. In addition, MetaPhlAn considers coding
sequences only and leaves out useful information contained
in the intergenic regions. GASiC [19] emphasizes on metage-
nomics abundance estimation, but it relies upon aligning reads
against reference genomes and thus is even more computa-
tionally demanding. MetaID [20] applies a scoring function
to assign weights to each k-mer and focuses on identification
and quantification at the strain level. In solid fermentation, it
is unrealistic to quantify microbes down to the strain level
because of the high complexity of the microbial community,
whose taxon composition has yet to be resolved at the strain
level in most cases. Therefore, in this study, we decided to use
unique k-mers at the species level for quantitative analysis.
We employed the fermentation starters from the same liquor
company as before [11] to demonstrate the development and
application of our method. The difference of the current paper
from our prior work [11] is discussed in Section III-A.

II. MATERIALS AND METHODS

A. Database construction

The steps involved in this study are illustrated in Fig. 1,
starting from the database construction stage. Complete
genome sequences of the species that have been identified
in the Gujing samples [11] were downloaded from NCBI
GenBank. They constituted the entire genome database of
this study. Throughout the study, sequence collection and
analyses were done with Python (https://www.python.org/),
and statistical analyses were performed with R (https://www.
r-project.org/).

B. Identification of unique k-mers at the species level

This was the pre-processing stage (Fig. 1). K-mers from
each genome were tallied. K-mers shared by all strains of a
species were extracted to represent the species, and the counts
of these common k-mers were means of their occurrences
across these strains. Species k-mers were defined as k-mers
found in the complete genome of a species if the species had
a single complete sequence, or the common k-mers of that
species if the species had multiple complete sequences. K-
mers found in the target species but not in any other species
in our database are referred to as unique k-mers, which were
obtained by comparing the k-mers of each species against
those of others.

C. Simulation of metagenomes

Metagenomes used in this study were simulated by gen-
erating random reads from the genomes of reporter species
up to a desired data volume, followed by sampling the rest
of the genomes in the database to meet a total data volume.
All sampled reads were in length of 150 bases, a typical
size of current Illumina sequencing reads. A cellular ratio,
instead of absolute cell numbers, was used to allocate data
volume among reporter species so that results are comparable
across samples and studies [21]. Consequently, species with
bigger genomes received higher DNA percentage quotas than
species with smaller genomes. Because current sequencing
technologies can generate at least 5-10 Gb raw data for
metagenome sequencing (Novogene), the total data volume
for our simulated metagenomes was set at 6 Gb.

D. Quantification of reporter species

Metagenome datasets were constructed to mimic the bac-
terial composition of fermentation starters prepared at 54-
60◦C, which are also called medium-high temperature starters
(MH Daqu). Simulated metagenome reads were screened to
identify unique k-mers belonging to any of the reporter
species. The count of each unique k-mer was adjusted by a
weight, which was the reciprocal of the average occurrence
of the k-mer per genome; this is called the modified count
of the k-mer. The abundance of a species, i.e., the number of
cells belonging to that species, was calculated as the mean
of the modified counts of its unique k-mers encountered
in a metagenome, as shown in Eq. (1), where ŝ is the
estimate of cell number (or genome copy number), m is the
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Fig. 1. Flow chart of the method. Our analytical method is composed of three stages: database construction, pre-processing, and quantification. In the first
stage, based on prior knowledge on the composition of a microbial community, complete genome sequences of the relevant species are collected. In the
second stage, k-mers are gathered from each genome, common k-mers are extracted from strains belonging to the same species, and then unique k-mers are
identified for each species. In the last stage, metagenomes are sequenced, and the sequence reads are screened for unique k-mers linking with target species.
The abundance of target species is computed based on the identified unique k-mers.

number of unique k-mers of the species that are found in the
metagenome, ci is the count of the ith k-mer, and wi is the
weight of the ith k-mer. For example, according to the results
of the pre-processing stage, species X has five unique k-mers,
a, b, c, d, and e, and their respective weights are 1, 1

2 , 1
3 , 1

4 , and
1
5 . In a simulated metagenome, the five k-mers were found to
appear 0, 1, 6, 7, and 12 times. Then the estimated cell number
of species X is (1 ∗ 1

2 + 6 ∗ 1
3 + 7 ∗ 1

4 + 12 ∗ 1
5 ) ÷ 4 ≈ 2.

In calculating ŝ, to reduce the effects caused by outliers, up
to 20% of the observations were trimmed from each end
before the mean was computed (trim ≤ 0.2). The estimated
cell numbers of all reporter species were then compared to
the predetermined ratio that had been used to simulate the
metagenome.

ŝ =

∑m
1 ciwi

m
(1)

III. RESULTS

A. Construction of the genome database

Our previous studies identified a collection of bacteria in
four fermentation samples from two plants of the Gujing
Group [11]. These microbes represented the majority of mi-
crobes one expects to find in the facilities, whether the samples

were from starters or pit mud or another fermentation stage.
Only a subset of these microbes are expected to be detectable
in a particular sample though, depending on where and when
the sample will be taken. Our genome database included all of
the available complete sequences of the identified species (last
searched in April, 2017). Altogether, 562 genome sequences
were collected, which represented 93 species. Among them,
54 species had genome sequence from a single strain, while
39 species had genomes from multiple strains, ranging from
2 to 167.

B. Determination of k-mer length

To accurately estimate the cell number of a species using
Eq. (1), m must be big enough. Here we were aiming at the
range of hundreds to thousands. In statistical terms, having a
sample size in this range should provide a reliable estimation
of the mean of a population. The average genome size in our
database was about 3 million base pairs (Mbp). Since DNA
molecules are double stranded, each genome contains up to
6 million k-mers. This is because the number of k-mers in a
DNA string of n bases is n − k + 1 and, when k is far less
than n (k << n), n − k + 1 approaches n. Also, DNA is
composed of 4 nucleotides, and 411 = 4194304. This means
any genome in our database could contain a complete set of all



possible 11-mers. Therefore, it is unrealistic to expect finding
enough unique 11-mers for our quantification needs. We began
testing at k = 12 and found that the number of unique k-mers
we typically got was in hundreds or thousands (see below).
When k = 13, the number of unique k-mers were in tens
or hundreds of thousands. Although statistically speaking, a
bigger sample size is preferred, processing tens or hundreds
of thousands of k-mers would pose a daunting demand on
computational resources. To balance the needs for statistical
analysis and computational cost control, we decided to set the
value of k to 12.

C. Identification of unique 12-mers at the species level

Because we intended to quantify microbes at the species
level and many species had more than one complete genome
sequences, we needed to identify a set of common k-mers
that were in every strain to represent the species. The number
of common 12-mers extracted for the 39 species ranged from
702027, in case of Enterobacter hormaechei, to 5247363, in
case of Bacillus anthracis.

Unique 12-mers were identified for each species by compar-
ing the 12-mers at the species level. For species having a single
genome sequence, the k-mers from that single genome were
used; for species having multiple genome sequences, their
common k-mers were used. The number of unique 12-mers
identified from the 93 species ranged from 0 for Clostridium
botulinum and E. hormaechei, to 5108 for Arthrobacter sp.
IHBB 11108 (as illustrated in Fig. 2).

D. Selection of reporter species

Among the dominating microbes found in the fermen-
tation starters MH Daqu, 13 bacterial species have been
identified, namely, B. licheniformis, B. subtilis, Virgibacillus
halotolerans, Staphylococcus kloosii, Lactobacillus brevis, L.
fermentum, L. plantarum, L. pontis, L. rossiae, E. hormaechei,
Pantoea agglomerans, P. ananatis, and P. vagans. The most
populated one is V. halotolerans, which counts to about half of
all identified species. Ten of the thirteen species had complete
genome sequences available and were candidates for reporter
species. Further analysis revealed that six of them had unique
12-mers close to or above a thousand (Table I). Therefore,
these six species were selected as the reporter species for
MH Daqu samples. If one is interested in other samples than
MH Daqu, e.g., pit mud samples, species dominating those
samples should be considered as reporters.

E. Quantification of reporter species

Among the reporter species, their relative abundance was
set at a ratio of 1:2:4:8:16:32 to test a wide range of values.
The parts were randomly assigned to the species, rendering P.
vagans to be 1 and L. fermentum to be 32 (Table I). (Since
each species represents an independent observation, a different
assignment of parts among the species should not affect the
final results.) The ratio was then adjusted by the genome sizes
of the species to compute DNA percentages in the simulated
datasets (Table I). A total of four metagenome datasets were
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Fig. 2. Histogram of the distribution of unique 12-mers among the species.
Unique 12-mers were identified at the species level for the 93 bacterial species
previously known to exist in Gujing fermentation samples [11]. The horizontal
axis represents the ranges of 12-mer counts found in the species, and the
vertical axis counts the number of species belonging to each range. For
example, the 3rd bin represents unique 12-mer counts from 1000 to 1500,
and 16 species belong to this range.

simulated with the entire (100%) or partial (25%, 50%, or
75%) dataset sampled from the reporter genomes (Table I).

With 20% of the observations were trimmed from both ends
of the modified counts of unique k-mers (trim = 0.2), the
calculated cell numbers of each species were plotted against
the expected ratio. For all four datasets, the two variables fitted
nicely to linear models, with r2 above 0.99, even in the case
of Comp 025 where only 25% of the data were from reporter
genomes (as illustrated in Fig. 3). As a negative control,
another mock metagenome containing 0% of reporter genomes
but 100% background genomes was constructed and analyzed
by following the identical procedure. When attempted to fit
the data points to a linear model, we got y = 17.5 − 0.31x,
r2 = 0.46. These results suggest that Eq. (1) is a reliable
estimate of cell numbers and a useful tool in depicting relative
abundance among species.

F. Discussion

The concepts of common k-mers and k-mer weight in this
study are different from what are defined in MetaID [20],
which intends to identify and quantify prokaryotes at the strain
level. In MetaID, common k-mers refer to k-mers found in
more than 2 strains, regardless whether the strains belong to
the same species, whereas in this study, common k-mers refer
to k-mers that are shared by all strains of a species. In MetaID,
weights are assigned to k-mers based on their presence across



TABLE I
COMPOSITIONAL DATA USED FOR METAGENOME SIMULATIONS

Species No. of Ratio Comp 025 Comp 050 Comp 070 Comp 100
unique 12-mers (%) (%) (%) (%)

B. licheniformis 1279 8 5.06 10.11 15.17 20.23
L. brevis 2166 16 6.15 12.30 18.44 24.59

L. fermentum 1956 32 9.30 18.60 27.89 37.18
L. plantarum 2225 2 0.96 1.93 2.89 3.86
P. ananatis 1217 4 2.83 5.66 8.49 11.32
P. vagans 986 1 0.70 1.41 2.11 2.82

All reporters 25 50 75 100
Background 75 50 25 0

genomes; the more ubiquitous the k-mer is, the lower the
weight it receives. In this study, weights are assigned based
on the presence of k-mers within a genome; the higher the
count of a k-mer within the genome, the lower the weight for
that k-mer.

The robustness of our method relies upon the large number
of unique k-mers we use in estimating cell numbers for
reporter species. It is worth noting that the unique k-mers
identified by our method are relatively unique, even in the
given database. That is because nearly half of our species have
multiple genome sequences, and it is their common k-mers
that are used to identify unique k-mers. The more genomes
a species has, the more diverse the genomes are, the less the
common k-mers, and hence the more unique k-mers we will
find for that species. For example, if k-mer x only exists in
E. coli strain A but not in strain B, when extracting common
k-mers for E. coli, x will not be collected. When E. coli is
compared to B. subtilis who does have x as a common k-mer,
we will mistakenly think x is unique to B. subtilis. When
the occurrence of x is used to calculate the cell numbers of B.
subtilis, we will overestimate. This type of errors are inevitable
and will increase the noise of our analysis. However, we do
not depend upon just one k-mer to estimate the cell number
of a species. Instead, we use hundreds to thousands k-mers,
thus the noise created by a small portion of k-mers should not
distort the overall estimation too much. Moreover, there are
always microbes that do not have complete genome sequences
available, even in well-studied industrial fermentation samples.
This false uniqueness is an expected part of the analysis. In this
sense, the unique k-mers here can be understood as signature
k-mers. However, strictly speaking, uniqueness is always up
to a certain level. So, for simplicity, we choose to use the term
unique k-mers. On the other hand, because of the limitation on
sequencing depth, some low frequent occurring species will be
underestimated. To reduce the errors of various types, one can
trim off the extreme numbers from both ends of a dataset to
get a better estimation of the population mean. If the noise is
too big to be handled by trimming the data, one can increase
the value of k to enhance specificity.

The successful application of the method is dependent
upon prior knowledge of the memberships of the microbial
community, which is often the case for industrial processes,
at least more and more so in recent years. The availability

of genome sequences of the microbes is another requirement.
Since industrial processes indubitably carry huge economical
interest and the cost of DNA sequencing is constantly going
downward, as we have witnessed in the past decade, it is
guaranteed that more and more microbes will be sequenced
in an accelerated pace, making precision quantification an
achievable goal in the near future.

IV. CONCLUSIONS

Characterizing and monitoring the relative abundance of
reporter species is an effective way to forecast the outcomes of
fermentation. In this study, we developed a simple but robust
method to quantify the relative abundance among a group of
reporter species, based on their unique k-mers. The application
of the method was demonstrated with fermentation starter
samples from a Chinese liquor facility. The method should
be applicable in similar industrial settings as well, such as
kimchi fermentation [12] and wastewater treatment [22].
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